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Abstract. Electric charges on a circle in the presence of a fractional magnetic flux(2π/e)(s/q)
are considered. A winding operatorŵ and a flux operator̂s are defined and the corresponding
Z(q) × Z(q) phase space is shown to describe the global properties of the system. The
Heisenberg–Weyl group of discrete displacements and theSL(2, Z(q)) group of discrete
Bogoliubov transformations in thes–w phase space, are studied. They describe coherent
evolution of the system, going beyond the external field approximation and taking into account
the back-reaction of the electric charge on the magnetic flux. Whenq is the power of a prime,
Z(q) is a Galois field and stronger results can be proved.

1. Introduction

Quantum mechanics in multiply connected spaces has been studied by various authors
[1–5]. It has been inspired by the Aharanov–Bohm effect [6] and provides the theoretical
background for the understanding of many phenomena (e.g. magnetoresistance oscillations
in small rings [7]).

An electric charge is moving on a circle and a magnetostatic fluxφ is threading the
centre of the circle, in the perpendicular direction. The wavefunctionR(x) obeys the quasi-
periodic boundary condition

R(x + 2π) = R(x) exp(iθ) (1)

whereθ = eφ. We consider the case of magnetic flux which is a rational multiple of the
flux quantum (fluxon):

φ = 2π

e

s

q
(2)

wheres andq are integers. In this case equation (1) becomes

R(x + 2π) = R(x) exp

(
i
2πs

q

)
. (3)

The Hilbert space of these functions for a fixeds, is a subspace of periodic functions with
period 2πq:

R(x + 2πq) = R(x). (4)
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We work in the bigger Hilbert space of equation (4) for two reasons. The first is that any
observation of the paths [8–10] can easily relax the restrictive condition (3). With such
measurements (and we shall give explicitly the relevant operators in equations (39) and
(40)) the winding number acquires a certain value and the phaseθ becomes uncertain. In
this case the wavefunction belongs to the bigger Hilbert space of equation (4). The second
reason is related to the fact that most of the existing literature tacitly assumes the external
field approximation, in which any back-reaction from the electric charge on the magnetic
flux is neglected. Within this approximation the value of the flux is fixed and therefores in
(3) has a fixed value. This is a reasonable approximation in a certain limit of the parameters
of the experiment; but there is an opposite limit where the back-reaction is significant. In
this paper we are interested in the latter case and we want to go beyond the external field
approximation. The magnetic fluxφ is no longer constant because the back reaction creates
some extra magnetic flux. Consequently the Hilbert space of (3) is too restrictive, and we
need to work on the bigger Hilbert space of (4). Within this Hilbert space we introduce two
basesv(x;N, s) and u(x;N,w) which are related to each other through a finite Fourier
transform.s andw are integers inZ(q) (the integers moduloq) and are dual to each other
in the Fourier transform sense.s is effectively the magnetic flux (with a factor 2π/qe) and
w is the winding number. The(s, w) take values inZ(q)× Z(q) which can be viewed as
a kind of phase space describing the global properties of the system. In this phase space
we introduce techniques from the theory of finite quantum systems (e.g. [11–15]).

We define the winding operator̂w and the flux operator̂s and use them to study
displacement operators and the corresponding finite Heisenberg–Weyl group. We also study
SL(2, Z(q)) transformations in this context. All these transformations evolve the system
coherently in thes–w phase space. In order to appreciate this we first point out that the
analogue of these transformations for a harmonic oscillator are the displacement operators

D(a1, a2) = exp[i(a1x + a2p)] (5)

associated with the Heisenberg–Weyl group and the squeezing operators

S(b1, b2, b3) = exp[i(b1x
2+ b2p

2+ b3xp)] (6)

associated with theSL(2, R) group. The study of these transformations provides an
understanding of the evolution of a system with a general quadratic Hamiltonian

H = b1x
2+ b2p

2+ b3xp + a1x + a2p. (7)

In the case of a finite phase space like thes–w phase space that we study here, the
displacement operators are again exponentials of linear functions ofs and w, and the
SL(2, Z(q)) transformations are quadratic functions ofs andw. There is a big difference
with the harmonic oscillator case however, which is that the coefficients take discrete values
here. Consequently the Heisenberg–Weyl andSL(2, Z(q)) transformations in our context
describe the evolution of systems with quadratic Hamiltonians

H = b1s
2+ b2w

2+ b3sw + a1s + a2w (8)

where the coefficients take discrete values, and for a discrete set of times (stroboscopic
evolution in the spirit of [15]). We call this coherent evolution in the sense that there is a
group structure; the product of two such evolution operators is another evolution operator
in the same group, for every evolution operator there exists an inverse, etc. Clearly a good
understanding of coherent evolution is a pre-requisite for the understanding of other more
complicated types of evolution (e.g. at times other than the stroboscopic ones or with other
more complicated Hamiltonians etc).
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The Hamiltonian (8) has a nice physical interpretation, in spite of the restriction about the
coefficients taking discrete values. Our system can be viewed as two coupled solenoids: one
is the electric charge on the circle (with flux proportional tow) and the other is the solenoid
that creates the magnetic flux threading the circle (with flux proportional tos). The first two
terms of the Hamiltonian (8) are the self-energies of these two solenoids and the third term
is the mutual energy. The fourth and fifth terms are linear terms associated with classical
sources. For example, if the fluxφ has a classical part, this will produce the linear terms in
s andw. The Hamiltonian (8) shows clearly that we study the full interaction between the
electric charge and the magnetic flux tube, going beyond the external field approximation
and taking into account the back-reaction of the electric charge on the magnetic flux tube.
In particular, theSL(2, Z(q)) transformations associated with the quadratic part of this
Hamiltonian are essential for the description of the interaction beyond the external field
approximation.

The work is related to areas such as anyons [16], Abelian Chern–Simons theories [17],
quantum groups, etc. Composites made from one electric charge and one magnetic flux tube
(anyons), exhibit fractional statistics and have been studied extensively in the literature. The
relation between anyons and quantum groups has been studied in [18]. It should be clear,
however, that in anyons we consider many charge-flux tube composites and study their
statistics, their thermodynamics, etc. Here we consider only one tube of magnetic flux
and electric charges that go around it, and describe this system taking into account the
back-reaction of the electric charges on the magnetic flux tube. In this sense, our work is
directly applicable to the Aharanov–Bohm type of experiments in which the parameters are
such that the back-reaction from the electric charges on the external magnetic flux cannot
be neglected.

2. The Hilbert space of periodic functions with period 2πq

We consider the Hilbert spaceH(q) of all periodic functions with period 2πq (whereq is
an integer):

R(x + 2πq) = R(x). (9)

Their Fourier expansion is given by

R(x) =
∞∑

M=−∞
a(M) exp

(
i
Mx

q

)
. (10)

Let N ands be the integer part and remainder correspondingly of the divisionM/q:

M

q
= N + s

q
. (11)

We rewrite equation (10)

R(x) =
q−1∑
s=0

ψ(x; s) (12)

ψ(x; s) =
∞∑

N=−∞
a(N; s)v(x;N, s) (13)

v(x;N, s) = exp

[
i

(
N + s

q

)
x

]
(14)
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wheres is an integer inZ(q) (the integers moduleq). It is easily seen that∫ 2πq

0
v(x;N1, s1)v

∗(x;N2, s2)
dx

2πq
= δ(N1, N2)δ(s1, s2) (15)

1

q

∑
N,s

v(x;N, s)v∗(y;N, s) = δ(x − y) (16)

whereδ(N1, N2) denotes Kronecker delta. The coefficientsa(N; s) are given by:

a(N, s) =
∫ 2πq

0
R(x)v∗(x;N, s) dx

2πq
. (17)

We see

ω = exp

[
i
2π

q

]
(18)

and we use the shorthand notationω(x) for ωx . The following formula will be useful,

1

q

q−1∑
m=0

ω[m(α − β)] = δ(α, β) (19)

whereα andβ are integers inZ(q). More generally, we shall use the sum

d0(x) = 1

q

q−1∑
m=0

ω(mx) = 1

q
Uq−1

[
cos

(
πx

q

)]
(20)

whereUq−1 are Chebyshev polynomials of the second kind. In the appendix of [14] we
have studied these functions and their derivatives, because they appear very often in the
study of finite quantum systems. In fact they are the analogues of the delta function and its
derivatives in infinite quantum systems.

We can now prove

v(x + 2π;N, s) = v(x;N, s)ω(s) (21)

ψ(x + 2π, s) = ψ(x, s)ω(s) (22)

ψ(x, s) = 1

q

q−1∑
m=0

R(x + 2πm)ω(−sm). (23)

We next perform a finite Fourier transform on the functionsv(x;N, s) with respect to the
variables:

u(x;N,w) = q−1/2
q−1∑
s=0

ω(sw)v(x;N, s) = q1/2 exp(iNx)d0

(
x

2π
+ w

)
. (24)

Note that

u(x + 2π;N,w) = u(x;N,w + 1) (25)∫ 2πq

0
u(x;N1, w1)u

∗(x;N2, w2)
dx

2πq
= δ(N1, N2)δ(w1, w2) (26)

1

q

∑
N,w

u(x;N,w)u∗(y;N,w) = δ(x − y). (27)



Coherent evolution in a multiply connected space 5199

Using them we get an alternative expansion forR(x):

R(x) =
q−1∑
w=0

χ(x,w) (28)

χ(x,w) =
∞∑

N=−∞
b(N,w)u(x;N,w) (29)

b(N,w) =
∫ 2πq

0
ψ(x)u∗(x;N,w) dx

2πq
. (30)

It is easily seen that

χ(x + 2π,w) = χ(x,w) (31)

and thata(N, s) andb(N,w) are related through the finite Fourier transform:

b(N,w) = q−1/2
q−1∑
s=0

a(N, s)ω(−sw) (32)

a(N, s) = q−1/2
q−1∑
s=0

b(N,w)ω(sw). (33)

We now introduce the Hilbert spacesH(q;N) spanned by the functions

H(q;N) = {v(x;N, s); s ∈ Z(q)} (34)

the Hilbert spacesH(q; s) spanned by the functions

H(q; s) = {v(x;N, s);N ∈ Z} (35)

and the Hilbert spaces̃H(q;w) spanned by the functions

H̃ (q;w) = {u(x;N,w);N ∈ Z}. (36)

It is clear that

H(q) =
∞∑

N=−∞
H(q;N) =

q−1∑
s=0

H(q; s) =
q−1∑
w=0

H̃ (q;w) (37)

where the summation denotes the direct sum.H(q;N) are q-dimensional Hilbert spaces
which for the various values ofN form a ‘ladder’ of Hilbert spaces. In eachH(q;N) we
have defined thev-basis and theu-basis, which are related to each other through a finite
Fourier transform. v(x;N, s) with fixed s and variableN span the infinite-dimensional
Hilbert spaceH(q; s). u(x;N, s) with fixed s and variableN span the infinite-dimensional
Hilbert spaceH̃ (q,w). A similar decomposition of the Hilbert space has been used in a
different context in [19]. Note, however, that there we had the harmonic oscillator Hilbert
space, while here we consider the Hilbert space of periodic functions of equation (9). The
interpretation is also different in the two cases.

3. The w–s phase space: a discretized torus describing the global properties of the
system

We consider a quantum mechanical particle on a circle (06 x < 2π ). A magnetic flux
φ, perpendicular to the plane of the circle, threads it through its centre. The wavefunction
R(x) of the particle is known to obey the quasi-periodic boundary condition of equation (1)



5200 A Vourdas

with θ = eφ. Since the phaseθ enters in the exponential, it is defined mod (2π ) and the
flux φ is defined mod (2π/e).

We next consider the case of a fractional flux given by equation (2), whereq is an
integer, ands belongs toZ(q). In this case equation (1) becomes

R(x + 2π) = R(x)ω(s). (38)

ClearlyR(x) is a periodic function with period 2πq. In fact it belongs to the Hilbert space
H(q; s) (equation (35)). We have already explained in the introduction that for our purposes
we need to consider the larger Hilbert spaceH(q), of all periodic functions with period
2πq.

When an experiment is performed there are two extreme cases. In one, the phaseθ

has a certain value (θ = eφ = 2πs/q), while the dual (in the finite Fourier transform
sense) variablew, which can be interpreted as winding number, has large uncertainty. This
is realized in the Aharanov–Bohm type of experiments (e.g. [6]), where the paths of the
particles are not observed and we get interference. In the second extreme case, we have large
uncertainty inθ and a certain value ofw. This is realized in an Aharanov–Bohm type of
geometry, where the paths of the particles are observed in order to determine their winding
number. The phaseθ is now disturbed by the measuring apparatus, and the interference
is destroyed. This has been discussed by Feynman [8], Furry and Ramsey [9] etc. More
recently it has also been discussed in the context of ‘which path’ experiments in [10]. In
our context, observation of the paths can be done with measurement (Hermitian) operators
whose eigenvectors areu(x;N,w):

3 =
q−1∑
w=0

wπw (39)

πw =
∞∑

N=−∞
u(x;N,w)u(y;N,w). (40)

They disturb the phaseθ but still leave it withinZ(q). Apart from the above two extreme
cases, there are in between situations where we have some uncertainty in the phaseθ , some
uncertainty in the winding numberw, and partial destruction of the interference. In the first
extreme case, whereθ has the fixed valueθ = eφ = 2πs/q, the wavefunctions belong
in the Hilbert spaceH(q, s). In the second extreme case, where the paths are observed
and the winding number has a certain value, the wavefunctions belong in the Hilbert space
H̃ (q;w). In other intermediate cases, the wavefunction can be anywhere inH(q). It is
therefore clear that for a general study of the problem we need to consider the wholeH(q).
Any restriction into a smaller space likeH(q, s) or H̃ (q;w) is appropriate only for special
cases of the phenomenon that we study.

An additional, and for our purposes more important, reason for working withinH(q) is
that we go beyond the external field approximation and take into account the back-reaction
of the electric charges on the magnetic flux. In this case it is clearly not sufficient to
work within a certainH(q; s) with a fixed s, because this restricts the value of the flux
into (2π/e)(s/q). We need the bigger Hilbert spaceH(q) that contains allH(q; s) for all
values ofs in Z(q), so that the electric charges on the circle can increase or decrease the
value of the flux.

So we consider wavefunctionsR(x) which are periodic with period 2πq. The position
of the particle is characterized by the pair (x,w), where 06 x < 2π andw is the winding
number. In the covering space of the circle, which is a real line, the position of the particle
is x+2πw. The momentum of the particle is seen in equations (10) and (11) to beN+(s/q)
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and is characterized by the pair (N; s). The pair (x,w) is dual (in the Fourier transform
sense) to the pair (N, s). x takes values in a circle, its dualN is an integer, and the
correspondingS×Z is the usual phase space of the system (describing local properties).w

takes values inZ(q), its duals also takes values inZ(q) and the corresponding discretized
torus

T = Z(q)× Z(q) (41)

can be viewed as a phase space associated with the global properties of the system. In this
paper we apply various phase-space techniques on the discretized torusT and discuss their
physical interpretation.

4. The Heisenberg–Weyl group: discrete displacements

The winding operatorŵ is defined to be the operator which hasχ(x,w) as eigenvectors
and the winding numbersw as eigenvalues:

ŵχ(x,w) = wχ(x,w). (42)

It can be realized as the integral transform

ŵf (x) =
∫
w(x, y)f (y)dy (43)

w(x, y) =
q−1∑
w=0

wχ(x,w)χ∗(y,w) (44)

wheref (x) is an arbitrary function inH(q). Similarly the flux operator̂s is defined to be
the operator which hasψ(x, s) as eigenvectors ands as eigenvalues

ŝψ(x, s) = sψ(x, s). (45)

It can be realized as the integral transform

ŝf (x) =
∫
s(x, y)f (y)dy (46)

s(x, y) =
q−1∑
s=0

sψ(x, s)ψ∗(y, s). (47)

Since bothw ands are defined moduloq, the operatorŝw and ŝ are defined moduloq1.
Displacement operators in thew-direction are defined as

E = exp

(
−i

2π

q
ŝ

)
. (48)

It is easy to prove that

Eχ(x,w) = χ(x,w + 1) (49)

Eψ(x, s) = ω(−s)ψ(x, s). (50)

Similarly, we define the displacement operators in thes-direction as

F = exp

(
i
2π

q
ŵ

)
. (51)

It is easy to prove that

Fχ(x,w) = ω(w)χ(x,w) (52)

Fψ(x, s) = ψ(x, s + 1). (53)
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Both s andw are defined moduloq and therefore

Eq = Fq = 1. (54)

It is also easy to show that

FE = EFω. (55)

It is now clear that the operators

D(α, β) = EαFβ (56)

whereα andβ are integers inZ(q), perform discrete displacements in thes–w phase space.
They form a finite Heisenberg–Weyl group similar to that studied in a different context in
[11–14]. Acting withD(α, β) on the general wavefunction

R(x) =
q−1∑
s=0

ψ(x, s) =
q−1∑
w=0

χ(x,w) (57)

we get

D(α, β)R(x) =
q−1∑
s=0

ω(−α(s + β))ψ(x, s + β) =
q−1∑
w=0

ω(βw)χ(x,w + α). (58)

We emphasize that̂s and ŵ are not generators of the Heisenberg–Weyl group, which in
the present context is discrete. Unlike the harmonic oscillator case, wherex̂, p̂, 1, form the
Lie algebra corresponding to the Heisenberg–Weyl group and the commutator [x̂, p̂] = i1
is very important, here thês and ŵ do not form a Lie algebra and the commutator [ŝ, ŵ]
is not so important. However, for completeness we have calculated its value (in a different
context) in [13].

It is clear that the problem considered in this paper reduces to quantum mechanics of
finite quantum systems, and the whole formalism developed in that area [11–14] is applicable
here. In the next section we discuss how the back-reaction problem is related to discrete
Bogoliubov transformations and theSL(2, Z(q)) group.

5. The SL(2,Z(q)) group: discrete Bogoliubov transformations

In this section we consider transformations that leave the Heisenberg–Weyl group of
equations (54) and (55) invariant. Let

E′ = EαFβ (59)

F ′ = EγF δ (60)

whereα, β, γ andδ are integers inZ(q) such that

αδ − βγ = 1 (modq). (61)

The physical interpretation of these transformations in the present context is that change in
the winding number byEα is associated with simultaneous change in the magnetic flux by
Fβ . This is related to the diagonalization of the Hamiltonian (8), and the inclusion of the
back-reaction. It is easy to show that

(E′)q = (F ′)q = 1 (62)

F ′E′ = E′F ′ω. (63)
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These transformations form theSL(2, Z(q)) group, which we have studied in a different
context in [14]. There we have constructed explicitly unitary operatorsU which give

UEU † = EαFβ (64)

UFU † = EγF δ. (65)

Here we present a different expression forU in terms of exponentials of quadratic functions
in s andw. This is important in the present context, because we interpret these operators
as stroboscopic evolution operators associated with certain Hamiltonians quadratic ins and
w. We consider the unitary operators

U1 = exp

(
i
π

q
w2

)
(66)

U2 = exp

(
i
π

q
s2

)
(67)

and show that forλ andµ in Z(q)

Uλ
1E

µU−λ1 = EµFλµω( 1
2λµ

2) (68)

[U1, F ] = 0 (69)

Uλ
2F

µU−λ2 = E−λµFµω(− 1
2λµ

2) (70)

[U2, E] = 0. (71)

Equation (68) can be proved by acting with these operators on the functionχ(x,w) and
using equations (49) and (52). Equation (70) can be proved by acting with these operators
on the functionsψ(x, s) and using equations (50) and (53). Combining the above equations,
we show that the operators

U = Uλ
1U

µ

2 U
ν
1 (72)

lead to the transformations

UEU † = EαFβω(ε) = E′ω(ε) (73)

UFU † = EγF δω(η) = F ′ω(η) (74)

where

α = 1− µν (75)

β = λ− λµν + ν (76)

γ = −µ (77)

δ = 1− λµ (78)

ε = 1
2λ(1− µν)2+ 1

2ν − 1
2µν

2 (79)

η = 1
2λµ

2− 1
2µ. (80)

The operatorE, which increases the winding number, transforms intoE′ = EαFβ where the
displacement inw is accompanied by a displacement ins. In other words, as the winding
number increases byEα, extra flux is created byFβ , which is added to the external flux.
This is precisely the inclusion of the back-reaction. A similar argument can be given forF

which becomesF ′ = EγF δ.
Acting with the operatorsU on both sides ofw ands we obtain new operatorsw′ and

s ′:

w′ = UwU † (81)

s ′ = UsU †. (82)
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We call these transformations discrete Bogoliubov transformations. In the harmonic
oscillator case the analogue of these transformations leads to new position and momentum
which are linear combinations of the original ones:

x ′ = ax + bp (83)

p′ = cx + dp (84)

ad − bc = 1. (85)

In equations (81) and (82), we cannot obtain linear combinations similar to (83) and (84).
w′ and s ′ can be interpreted as operators along different lines in phase space, so that in
w′, a change inw is intimately connected with some change ins and also ins ′ a change
in s is intimately connected with some change inw. This is precisely the inclusion of the
back-reaction.

We have explained in [14] thatZ(q) is, in general, a commutative ring with a unity. If
and only if q is a power of a primep

q = pm (86)

Z(q) is Galois field. Stronger results can be proved in the Galois case. For example, in the
transformations (59) and (60) due to constraint (61)α, β, γ , andδ, are not all independent.
The question then rises whether, for a given triplet (α, β, γ ), there existsδ which satisfies
(61). In the non-Galois case the answer is that there might or might not existδ which
satisfies (61), and this is clearly a weak statement. In the Galois case, due to the existence
of inverses, the answer is affirmative and we have

δ = α−1(1+ βγ ). (87)

The phase spaceZ(q)×Z(q) in the non-Galois case is a set of points with no geometrical
structure. In the Galois case it is a finite geometry [20]. A finite geometry has a finite
number of points and a finite number of lines. TheSL(2, Z(q)) transformations rotate
the s andw axes into news ′ andw′ axes and they can be viewed as ‘discrete simplectic
transformations’ or ‘discrete Bogoliubov transformations’ in this geometry. Although they
are discrete, they are performed on a geometry. Consequently, they have a clear physical
interpretation and the results are equally strong with the continuous (harmonic oscillator)
case of equations (83) and (84). All these nice properties are intimately related with the
existence of inverses inZ(q) in the Galois case. In the non-Galois caseZ(q)×Z(q) is not
a finite geometry, and the concepts ofs andw axes and rotations into news ′ andw′ axes
are weak. This is intimately related to the fact that in the non-Galois case the inverses in
Z(q) do not necessarily exist.

6. Discussion

We have considered an electrical charge on a circle in the presence of an external fractional
magnetic flux (2π/e)(s/q). The objective has been to go beyond the external field
approximation and take into account the back-reaction from the electric charge on the
magnetic flux. We found that the Hilbert spaceH(q; s) of functions that obey equation (3)
is too restrictive, because it forces the flux to have the value imposed externally and does
not allow for the back-reaction to be added to it. The more general Hilbert spaceH(q) of
functions that obey equation (4) allows for the back-reaction to be taken into account.

In this more general Hilbert space we have introduced the winding operatorŵ, the flux
operatorŝ, and thew–s phase space, which is a discretized torusZ(q)×Z(q). This phase
space describes the global properties of the system. Indeed,w is a winding number defining
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the position of the charge in the covering space of the circle (x + 2πw). s is magnetic flux
and through the non-trivial boundary conditions also appears in the momentumN + (s/q).
It is clear that both quantities describe global properties.

In this phase space we have studied displacement operators and the corresponding
Heisenberg–Weyl group, and the operators of equation (72) and the corresponding
SL(2, Z(q)) group. The operators (72) lead to thew′ and s ′ of equations (81) and (82)
which are nicely interpreted by the fact that changes inw are intimately related with changes
in s (and this leads tow′), and changes ins are intimately related with changes inw (and
this leads tos ′). This is precisely the inclusion of the back-reaction.

These transformations describe coherent evolution of the system. By that we mean
that, at least stroboscopically, the operators performing the evolution of the system form a
group. The corresponding Hamiltonians are quadratic Hamiltonians with coefficients that
take discrete values. They describe the full interaction between the electric charge and the
magnetic flux, going beyond the external field approximation and taking into account the
back-reaction of the electric charge on the magnetic flux. Understanding of the coherent
evolution is essential for a further study of more complicated types of evolution in these
systems (e.g. at times between the stroboscopic ones, or with other more complicated
Hamiltonians, etc).

The fact thats–w are dual quantum variables implies that there exists an uncertainty
principle. Qualitatively it says that if1s is small then1w is large, andvice versa.
Quantitatively the uncertainty principle in finite systems is expressed with the so-called
entropic uncertainty relations (e.g. [13] and references therein). It is interesting to point out
that the two extreme limits of the uncertainty principle (1s = 0 and1w = 0) correspond
to the two extreme cases that we have discussed in section 3. When1s = 0 we have the
Aharanov–Bohm type of experiment in which the value of the flux is well defined and the
winding number has large uncertainty. When1w = 0 we have the ‘which-path’ type of
experiment in which the path of the particle has a well-defined winding number and the
flux has large uncertainty. In intermediate situations both the winding number and the flux
have small uncertainties1w and1s, correspondingly.

As a final comment we point out that [21] have considered in a mathematical context
the case whereθ/2π is an irrational number. Also [22] have studied the case whereφ is a
time-dependent, non-classical magnetic flux.

References

[1] Laidlaw M G G andMorette-De Witt C 1971Phys. Rev.D 3 1375
[2] Schulman L S 1971J. Math. Phys.12 304

Schulman L S 1981Techniques and Applications of Path Integration(New York: Wiley)
[3] Dowker J S 1972J. Phys. A: Math. Gen.5 936
[4] Acerbi F, Morchio G and Strocchi F 1993Lett. Math. Phys.27 1

Acerbi F, Morchio G and Strocchi F 1993J. Math. Phys.34 899
[5] Narnhofer H and Thirring W 1993Lett. Math. Phys.27 133
[6] Aharanov Y and Bohm D 1959Phys. Rev.115 485

Chambers R G 1960Phys. Rev. Lett.5 3
Olariu S and Popescu I I 1985 Rev. Mod. Phys.57 339
Tonomura A, Osakabe N, Matsuda T, Kawasaki T, Endo J, Yano S and Yamada H 1986Phys. Rev. Lett.56

792
Peshkin M and Tonomura A 1989The Aharanov–Bohm Effect (Lecture Notes in Physics) 340(Berlin:

Springer)
[7] Webb R A, Washburn S, Umbach C P, Laibowitz R B 1985Phys. Rev. Lett.54 2696



5206 A Vourdas

Datta S, Melloch M, Bandyopadhyay S, Noren R, Vaziri M, Miller M and Reifenberger R 1985Phys. Rev.
Lett. 55 2344

Lee P A 1986Nature324 613
Pepper M 1988Proc. R. Soc. LondonA 420 1
Aronov A G and Sharvin Y V 1987 Rev. Mod. Phys.59 755

[8] Feynman R, Leighton R and Sands M 1965 Quantum mechanicsThe Feynman Lectures on Physicsvol 3
(New York: Addison-Wesley)

[9] Furry W H and Ramsey N F 1960Phys. Rev.110 629
[10] Scully M O, Englert B G and Walther H 1991Nature351 111
[11] Weyl H 1950Theory of Groups and Quantum Mechanics(New York: Dover)

Schwinger J 1960Proc. Natl. Acad. Sci., USA46 570
Schwinger J 1970Quantum Kinematics and Dynamics(New York: Benjamin)

[12] Balian R and Itzykson C 1986C. R. Acad. Sci.303 773
Auslander L and Tolimieri R 1979Bull. Am. Math. Soc.1 847 9
Mehta M L 1987J. Math. Phys.28 781
Varadarajan V S 1995Lett. Math. Phys.34 319
Digernes T, Varadarajan V S and Varadhan S R S1994Rev. Math. Phys.6 621
Chadzitaskos G and Tolar J 1993Theor. Phys.32 517

[13] Vourdas A 1990Phys. Rev.A 41 1653
Vourdas A 1991 A43 1564
Vourdas A and Bendjaballah C 1993Phys. Rev.A 47 3523

[14] Vourdas A 1996J. Phys. A: Math. Gen.29 4275
[15] Hannay J H and Berry M V 1980 Physica1D 267
[16] Wilczek F (ed) 1990Fractional Statistics and Anyon Superconductivity(Singapore: World Scientific)
[17] Hosotani Y 1989Phys. Rev. Lett.62 2785

Ho C L 1996J. Phys. A: Math. Gen.29 L107
[18] Floratos E G and Tomaras T N 1990Phys. Lett.251B 163

Bardek V, Doresik M and Meljanac S 1994Phys. Rev.D 49 3059
[19] Vourdas A 1993J. Math. Phys.34 1223

Vourdas A 1994J. Math. Phys.35 2687
[20] Carmichael R D 1956Groups of Finite Order(New York: Dover)

Hirschfeld J W P1979Projective Geometrics Over Finite Fields(Oxford: Oxford University Press)
[21] Rieffel M A 1981 Pacific J. Math.93 415

Faddeev L D 1995 Lett. Math. Phys.34 249
[22] Vourdas A 1995Europhys. Lett.32 289

Vourdas A 1996Phys. Rev.B 54 13 175


